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Abstract -Transport theory based on the relaxation time formalism has been applied to bismuth; the results 
are used in Part II of this paper to determine the figure of merit of Bi in energy conversion processes. Using 
the Jones-Shoenberg model for bismuth, analytic expressions have been derived for the electrical resistivity, 
thermal conductivity, and for the Hall, Seebeck and Nernst coefficients. The Boltzmann transport equation was 
solved for the perturbed distribution function using anisotropic relaxation times. The result was then introduced 
in the transport integrals for the electric current and for energy flux to obtain the phenomenological equations 
for each set of charge carriers associated with a given ellipsoid. The contributions of each group of carriers 
were then added in the common symmetry coordinate system of the crystal to obtain the above-mentioned 
transport coefficients. To derive analytic expressions, it was necessary to consider the special cases where the 
magnetic field is aligned with each of the three symmetry axes and to pass to the limit of very low or very high 
magnetic fields. 

1.   PRELIMINARIES 

RECENTLY considerable interest has developed in the application of the Nernst and 
Nernst-Ettingshausen effects to energy conversion; this, in turn, has stimulated a search 
for suitable device materials. Among the earliest experimental studies in this direction 
were measurements on the galvano-thermomagnetic properties, figure of merit, and general 
device performance of Bi and Bi-Sb alloys [1-4]. These experiments provide an opportunity 
for checking out numerical predictions based on transport theory; if the answers are in 
agreement with experiment, then the theory can be used in further investigations con- 
cerning optimal operating conditions of the device. The purpose of our work is thus two- 
fold. In Part I transport theory is developed in some detail to establish several new 
features; namely: (a) obtaining the solution of the Boltzmann transport equation for 
the very general case of anisotropic relaxation times, arbitrary magnetic field strengths, 
and temperature gradients, (b) deriving general thermodynamic relations for the over-all 
Seebeck and thermal conductivity tensors in terms of one-band contributions, (c) intro- 
ducing anisotropic mobilities into the equations of interest, (d) establishing the necessary 
refinements of earlier transport theories [5,6] which bring theory in accord with experi- 
ments, and (e) setting up all explicit formulae needed for later use. In Part II we check the 
theoretical predictions against available experimental data for Bi and then utilize the 
theory for calculating the appropriate figures of merit. 

The band model which is used will be introduced in Section 3; however, it is well to 
remark here that we shall generalize the ABELES-MEIBOOM [5] treatment of Bi by taking 
into account the JONES-SHOENBERG band model refinement [7]. Also, from general 
considerations it emerges [K] that materials best suited for energy conversion processes 
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based on the Nernst and Nernst-Ettingshausen effects are intrinsic; we therefore specia- 
lize to this case quite early. Other simplifications are introduced as needed to obtain the 
final results in tractable form. 

We begin with the solution of the Boltzmann equation in the relaxation time formal- 
ism. The procedure parallels that of an earlier derivation [9] to which it reduces for the 
isotropic case. The reader is referred to this discussion for certain details and symbols. 

One should note at the outset that the external force acting on charge carriers in a 
band in zero magnetic field is not simply the applied electric field E, but, more generally, 
the gradient of the band edge, Vr<?B [9]. With this modification, the Boltzmann transport 
equation for isotropic media reads: 

{ZelhWA-tJZe) + (v x H)/c].Vk/ + v. Vr/= -(/-f0)z~\ (1.1) 

where Z = +1 for holes and -1 for electrons, v = (l/fi)Vk<?, <? and SB are the energies 
and band edge energies,/or f0 are the actual or equilibrium distribution functions and z 
is the relaxation time; the remaining symbols have their conventional significance. We 
obtain an approximate solution to equation (1.1) by the usual method [10] of setting 
f = fo for first and third terms on the left and/ = /0 — v. *Y(df0/ci;) in the remainder. 
The first objective in the general derivation is to find an expression for the quantity *F. 
For this purpose, one proceeds essentially as in [9]. The only modification required to 
adapt the result to anisotropic media consists in the replacement of x~v by the tensor 
x"1 = V. The generalization of equation (1.8), [9], is thus given as: 

P. v - (Ze/ficXv x H). (¥ . Vkv) = (V"]. T). v, (1.2) 

where 

P m ZeVr{SB/e) - rVr(//B/T) - (?./T)VrT (1,3a) 

m ZeVr(C/e) + [(/,, - s)/T]V,T. (1.3b) 

In the above, fig s £ — SB, and E = $ — SB, where f is the Fermi level. 
In the principal coordinate system of a particular ellipsoid, one can write 

Vkr/ff=Vk,Vk.e/^, 

where the primed coordinates serve as a reminder that this special coordinate system is 
being used; the quantity on the right represents a diagonal entry of the reciprocal mass 
tensor q = m"1. On inserting this result in equation (1.2) and applying the triple scalar 
product rule to the term (v x H). (M* ,'q*), one obtains: 

{P - (Ze/c)[H x (¥ . q)] - (Y~x. ¥)}. v = 0. (1.4) 

As has been discussed in connection with the comparable equation, (1.11b) of [9], equation 
(1.4) can only be satisfied by requiring that the quantity in curly braces vanish. In addition, 
we introduce a new variable M**, defined as Nr* = ?. T*. Equation (1.4) can then be re- 
arranged to read: 

«F* - (Ze/c)[(t. V*) .tf] x H = P. (1.5) 
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To solve the above, we operate with t*. on the left; this is to be followed with the operation 
. tf from the right and finally, by the operation x H from the right. One then obtains: 

[(*.T^.1f] * H - (Ze/c) {[?. {[(?.<P).1fl xH}].1f)xH = [(!.P).1f] x H.      (1.6) 

The next step consists in evaluating the quantity sandwiched between Ze/c and xH 
in the second term of equation (1.6). The relaxation time formulation of the Boltzmann 
transport theory rests on the assumption that energies are conserved in the collision 
between charge carriers, and that the velocity is randomized during such encounters. 
Also, consistent with the above assumption, scattering of carriers from one valley to 
another is assumed to be included in the relaxation time t. HERRING and VOGT [11] 
have shown that in these circumstances V'is a diagonal tensor in the ellipsoidal coordinate 
system. Let us set: 

t = 

0     0 

0       0     T. 

q = 

-L   o    o 

1)1,. 

0      0 
in. 

H = (Hx.,Hy.,H:). 

«P* = (¥*., ¥*., «P?) 

(1.7) 

On performing the indicated operations in the term under consideration, one arrives at 
the following result: 

flf. {[(*.▼*).1fl x HJl.tT = ▼* x (<?.H), (1.8a) 
where 

£Sfi:¥-7||m-|||irM|, (1.8b) 
in which ||m|| is the determinant of the mass tensor. Equation (1.8) may be checked by 
substituting from equation (1.7) on both sides, thus obtaining an identity. We now sub- 
stitute equation (1.8) into equation (1.6) and apply the triple vector product rule to the 
resulting middle term, (Ze/c)[¥* x (C. H)] x H, to obtain: 

[(¥. ¥*) . q ] x H - (Zc/c){(H. **)(£. H) - [H. (C . H)]**} = [(¥. P).%] x H.      (1.9) 

Next, return to equation (1.5) and operate on both sides with .H(C .H) from the 
right. By the triple scalar product rule, the resulting second term on the left vanishes 
identically, leaving: 

(T*. H)(f. H) = (P. H)(tf. H), (1.10) 

so that on substituting this result into equation (1.9), we finally obtain: 

[(¥. **) .1f] x H = (Zc/c)(P. H)(C . H) - (Zc/c)[H. (C . H)PP* + [(?. P) .tf] x H.(l.ll) 

We have hereby succeeded in reformulating the second term of equation (1.5) in a manner 
that allows this relation to be solved for *P*. Inserting equation (1.11), one obtains: 

«P= V. 4** = ?. [P + (g/c)2(P. H)(ff. H) + gg/c)[(y. P).ff] x H) 

~l + (e/c)2[H.(£.H)] 
(1.12) 
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from which the distribution function/can be calculated. If the relaxation time is a scalar, if 
VrT = 0, and for homogeneous materials where Vt(SB/Ze) — E when VrT = 0, the above 
reduces to the relation cited by Shibuya [12] and extended to anisotropic relaxation 
times by Bullis [13]. 

2.   THE GENERAL PHENOMENOLOGICAL EQUATIONS 

The second task consists of writing down the phenomenological equations, based on 
the transport of electric charge and of "kinetic energy" c, as given by: 

J = (Ze/4rc3) \yf d3k = - (Ze/47t3) Jv(v. V)(df0/de) d3k (2.1 a) 

J0. = (1/4713) Jßyfd3k = - (1/47I3) jcv(v. V)(df0/de) d3k. (2. lb) 

In the above, the integral involving f0 vanishes identically. To obtain an explicit formula- 
tion, we substitute for 4* from equation (1.12), utilizing equations (1.3b), (1.7) and (1.8b). 
After carrying out the required operations, one obtains the following expression for the 
x' component of *P: 

MVA' = xx.Px. + (Zelc)2xx.zy,z:,{Hx.lmy.mz){Hx.Px. + Hy.Py. + H:,P:)- 

- (Ze/c)(zx.T:,HyP:./m:, - xx.xy.H.Py,/my) 

= [Zerx, + (Zeyc2)(rx.ry,rz,Hl/m:.my.)WAC/e) + 

+ [(Ze3/c2)(xx.Ty.Tz.Hx.Hy./my,m,,) + (e2/c)(xx,xy,H:./my.)}Vy.(:/e) + 

+ [(Z(<3/c2)(VVT2.tf..H>yro...) - (e2/c)(xx,x:.Hy./m:.)W-.&) + 

+ UB ~ e)/T]Tx.[l + (e2/c2)(zy,T1,H
2,/my.m=,))Vx,T+ 

+ [(HB ~ B)/T](Tx.Ty/my.)[(Ze/c)Hz. + (e2/c2)(x:.Hx.Hy./mz-WyT+ 

+ [(/'« - B)/T](Tx.Tz./tnM-Ze/c)Hy. + (e2fc2)(xy.Hx.H:./my)]V:T, (2.2) 

where 

A' = 1 + (e2/c2)[x},x^H2Jmym:, + xx,xz,Hj,/mx.m:. + xx,xy.H
2./mxmy.]. (2.3) 

Corresponding relations for Wy- and *?.. are obtained by cyclic permutation of the 
component subscript. 

Equation (2.2) and its y',z' analogues must now be substituted in equation (2.1). 
In this connection, it becomes convenient to introduce the following transport integrals 
(/.',v' = x',y',z')\ 

GP> - - 
47I3f. 

1 
Lf'^ = - 

47tV 

mvA       de. 

"«AW 0fo 
mxmym.,A!      de 

d3k. (2.4c) 
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It is expedient to reformulate these integrals by expressing the energy e of charge 
carriers relative to the appropriate band edge as: 

e = {h2/2)(kl/mx. + k2./my. + B/m..) (2.5) 

in the principal coordinate system of an ellipsoid. We can then introduce a new variable, 
c,r = kl'/ntx; with which (2.5) may be rewritten as: 

£ = (ft2/2)Z^ = ^2A (2.6) 
r 

The above equation characterizes a set of concentric spheres in £-space. Henceforth, we 
assume that the T;- are functions of r. only. In this event, we may write d3lj = 4nl2 d<;, 
whence: 

d3k = (mx.my,m._.)1/2 d3$ = {Anlhz){2z)il2{mx.mym:)
V2 de. 

By spherical symmetry, £?. = (l/3)c2, then: 

(m;./h
2)(8e/dkx.)

2 = m4.rj. = 2e/3. 

We now use equations (2.7) and (2.8) to rewrite (2.4) as: 

ek+1/2Vo &p = 2v/2(mx.nyny)1/2 | t 
ln2m;.h3 A' a: 

d£ 

,,, _     2V2(m,.my,»,.,)^2 ^w»^% 
3n2cmA,mv.h3     0        A'        5e 

L,= 
2^/2 

! 
TX.T,,.T.<£ 

1+1/2  fl 
3/o da 

(2.7) 

(2.8) 

(2.9a) 

(2.9b) 

(2.9c) 
37t2c2(»ii.Mi/m..)1/2ft3 o A' fa 

Utilizing either equations (2.4) or (2.9), the x' component of the current density vector 
Jx' = -(Zey47t3)JJJt&¥Ä<d/0/fa)d3k becomes: 

Jx' = Ze{ZcKixl + Ze3LiH2.)Vx47^) + Ze(e2G(?y)H._, + Ze3LlHxHy)Vy^M+ 

+Ze(-e2Hy.G[*--) + Ze'L.H^H^WACM + (Ze/T)[(K[x)fiB - K2
X'])+ 

+ e2Hl(LüiB - L2)Y7X.T 

+ (e2/T)[HAG\xY)VB ~ G?V)) + ZeHx,Hf(L^B - L2)]Vy.T+ 

+(e2/T)[-Hy.(G(r-% - Gf-1) + ZeH^H.AL^B - L2)]V.T. (210) 

The corresponding quantities Jy and Jr' are obtained by cyclic permutation of the co- 
ordinate indices. Furthermore, one can show that JQ — — (l/47t3)JJ|er2.vFx-((5/'0/5fi)d3k is 
specified by a relation like equation (2.10), except that one power of Ze is deleted from 
the right and that the subscripts g, k, and / in equation (2.9) are raised by one unit. The 
remaining components are again found by permutation of coordinate indices. 

The information discussed above can be succinctly summarized by the following 
relationship: 

(2.11a) 
J <T      !      6 

1 
Wie) 

Ja. 
1 

_   U      1     Y   . VT 
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where in the principal coordinate system of each ellipsoid: 

tf = 

e2K\''< + e*L:H
2

x 

Ze3G{f)Hy. 

_ + e*LlHxHl- 

Ze3G\'y'H:, 

+ eiLlHxHy. 

e2^ 

+e*LlH
2. 

-Ze3G({')Hx. 

+ eiLiH,Hs. 

-Ze3G\xl)Hy. 

+e'LiHxH, 

Ze3Gl{')Hx. 

+ eiLlHyHz. 

+ e2K?> 

(2.11b) 

e = 

(Ze/T)(Kr>nB ~ K<f) + 

+(Ze3/T)(L^B - L2)H
2

X. 

-(e2/T)(G^>yB - G^)HS.+ 

+ (Ze3/T){LlßB - L2)HxHy. 

+(e2/T)(G?''V»-G!f','>)W,.+ 

\_+{Ze3IT)(LliiB - L2)HXH., 

+ (<>2/T)(G<*>'V. - G<f>>)Ht.+ 

+ (Ze3/T)(LiftB-L2)Hx.Hy 

(Ze/D(XrS - *#>)+ 
+ (Zc3/T)(L,/i« - L2)H

2. 

-(e1/T)(GV%-G2>,'T)Hx.+ 

+ (Ze3/T){L,fiB - L2)HyH:. 

{-e2/T)(GT'>iiB-Gf>)H,+ 

+ (Ze3/T)(LinB - L2)HXHS. 

(e2/T)(Grt>liB-GY'))Hx.+ 

+ (Ze3/nLlßB - L2)HyH, 

+ (Ze/T)(KrßB - K?'))+ 

+ (Ze3/T)(LlßB - L2)H2, 

(2.11c) 

U = 

ZeKf + Ze3L2H\ e2G2*'>Ht. -e2G(
2''

)Hy. 

+ Ze3L2HxHy. + Ze3L2HxH, 

-e2G2'f>H,. ZeK'f e2GY'">Hx- 

+ Ze3L2HxHy + Ze3L2H
2. + Ze3L2HyH, 

e^f'H,. -e2Gf'Hx. ZeKf 

+ Ze3L2HxH._ + Ze3L2HyHs + Ze3L2Hl 

Y = 

and 

\l/T)(K2*% - K'f) 

+(e2/T)(L2tiB - L3)HX. 

(-ZelT)(G2*»nB - G?>',)HI. 

+ (e2/T)(L2fiB - L3)HxHy. 

(Ze/T)(Gf'% - Gf>)Hy. 

+ (e2/T)(L2nB - Li)HxHz. 

(Ze/T)(G2*'>»B - GSf'''')He. 

+ (e2/T)(L2ßB - L3)Hx.Hy. 

(1/T)(A:</V» - ^P) 

+(e2/T)(L2n„ - L3)H2. 

-(Ze/T)(G!f'''V, - G^)HX. 

+ (e2/T)(L2flB - L3)HyH:. 

-(Ze/T)(G2"'% - Gf'^H, 

+ {e2/T)(L2n„-L3)Hx.H: 

(Ze/TKC'/'V» - G{i'))Hx. 

+ (e2/T)(L2flB - L3)Hy,H:. 

(l/TKX(f'V. - KW 
+ (e2/T)(L2ftB - L3)Hl 

(2.1 Id) 

(21 le) 

To avoid the complexities inherent in the use of equation (2.11), we now make another 
in a series of approximations by taking each xx. to be independent of e. In this event, we 
can rewrite equation (2.9a-c) as: 

Kjf 

L, = (TX'TJ..T../wix.mJ..m:..AV2)S,, 

(2.12a) 

(2.12b) 

(2.12c) 
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in which a new transport integral 

_    2^/2 (wyiyw,.)1'2 ?      1/2 a/0 

*"" ~ 3^~" "ft3 r       äe (    3) 

has been introduced; n refers to the index k,g,I in equation (2.12). The quantity A' is 
given by equation (2.3). 

The zero magnetic field charge carrier conductivity partial mobility components are 

ux. = exx./mx. (2.14) 

in the principal coordinate system of each ellipsoid. This relation applies since we assumed 
earlier that rx. does not depend on E; moreover, the ux> represent mobilities in zero 
magnetic field. Equation (2.3) now becomes: 

A' = 1 + uy.u2,H
2

x,/c
2 + ux.uz,H],lc2 + ux.uyHllc2, (2.15) 

and the matrices (2.11) reduce to: 

s = ZQM/T 

tf = zsM 
¥= Q2U/eT, 

where Qt = S,/<B — Sl+1, and where 

u,[l + uru,(!±)2] HyM,,(z^ + M,^) 

i      H,. HX.H..\ r /H.'\al 

(2.16a) 

(2.16b) 

(2.16c) 

(2.16d) 

<->    l 
M = — 

A' 

IHX. HyH.. \ 

"«".- (• Z—y- + i/„.   * )   "M~zIv+u^) U«[I+^(T)1 

. (2.16e) 

The above relations represent the end result of the statistical transport theory for a 
group of charge carriers associated with an ellipsoid, in terms of the principal coordinate 
system of that particular ellipsoid. We now wish to correlate the tensor entries with 
quantities that are experimentally determined. For this purpose, it is convenient to 
introduce phenomenological equations in partially inverted form [14], namely: 

7.1 .S' J ii 
J 

VT 
(2.17) 

The entries in the above relations are essentially definitions. Thus, when VT = 0, VC/e 
and J are interconnected by the resistivity tensor,^; when J = 0, V£/f and VT are related 
by the Seebeck tensor pi Again, for J = 0, T3S is the heat flux (energy transfer past unit 
area in the absence of a net particle transfer), which is related to the temperature gradient 
by the negative thermal conductivity tensor, —1c. Finally, for VT = 0, the functional 
dependence of TJS on J involves the Peltier tensor, IT. It is worth noting that the entries 
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in the latter are connected to the 'p entries by the Casimir-Onsager reciprocity condition 
IIy(-H) = TpjfH); furthermore, Pij(-H) = Pji(H), and ;c,./-H) = Kjl{H). 

For the moment, we will continue to consider only the group of charge carriers 
associated with a given ellipsoid. In this event, the entries in equations (2.17) can be 
expressed in terms of those in equation (2.11a) or (2.16) as follows: By appropriate 
manipulation of the results in [15], it can be shown that: 

T.Js = .JQ,-K,yT-(nB/Ze)J. (2.18a) 

Actually, we wish to ignore the contribution of the lattice thermal conduction processes 
to T3S and define a new quantity TJS. by 

TJS. = Jß. 0VZ4I. 
Applying equation (2.18b) to equation (2.16), we can then write: 

Ze 

VM 
ze, 

M 

*-*    Ot <-> 
ZSM   ~M 

eT 

v: 

V7' 

(2.18b) 

(2.19a) 

(2.19b) 

Now solve for V£/e in terms of J and VTin equation (2.19a) and eliminate V£/e from 
equation (2.19b); also replace the Qt by their definition. We then obtain: 

VC/e 

73« 

tir1 

-/'« Ze 

11B 

SteT 

1 
Zef 

M 

.1 

VT 

(2.20) 

Comparison between equations (2.20) and (2.17) then leads to the following identifications: 

*pf;) = U~1M/S^e, (2.21a) 

where it is clear from equation (2.13) that Sy depends on the effective mass of the carriers 
under consideration; St is therefore provided with the index v. For all ellipsoids lying 
within a given band, S(^ is the same; this is also true of the mobilities of carriers in a given 
band. 

One can determine M~1(v) in equation (2.21a) from equation (2.16e) using the standard 
inversion procedure. This leads to the result: 

c 

HÖ» „ 7/iv) 

?;' i_ 
S\v)e 

1 z. 

/ 
i 

77jv>       H?   J_ 
v c        v c     uVj 

(2.21b) 
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From a comparison of equations (2.20) and (2.17), the general Seebeck tensor is found 

e(iv)   Jl ? °   ssw-jtf» 1 0 0 
0 1 0 
0 0 1 »' - - z^>|2 J <;J S   z>  "■ ■ "'""i        <222> 

In the present approximation, therefore, the Seebeck coefficient for a single valley is 
isotropic. 

Finally, the electronic contribution to the thermal conductivity is: 
C(v)c(v) _ C(>)= c(v)o(v) _ o(v)J 

p "       eT#? ~     e2TS<?2      p ' l     J 

Since 1?p(v) is proportional to^,v), the Wiedemann-Franz law holds in the approximation 
scheme used here. 

Having disposed of the one-group problem, it remains to find expressions for the 
totality of carriers in all different groups of relevance. In general, the physical properties 
of anisotropic materials are characterized in terms of several bands, one or more of which 
is of the multi-valley form. For the summation, we use as a guiding principle the fact 
that the individual fluxes are additive, whereas the gradients VT and V£/e are the same 
for each group of carriers. Furthermore, one should recognize that equation (2.17) is a 
thermodynamic relation that takes no account of the details of conduction processes. 
Hence, the form of equation (2.17) remains unaltered for the totality of charge carriers; 
J and Js, then refer to the total flux vectors, and the tensor entries specify the appropriate 
physical properties of the material as a whole. 

Let us then determine the total current density from equation (2.19) as: 

Jen = £ j(v) = Ys^cUM-v:/e + £(ZVQ
(
I

V
#

V)
/:T) -vr 

V V V 

= (^v')'V:/,-(Xp(^)-vr, (2.24) 

where equation (2.22) was used to arrive at the second line. Likewise, from equations 
(2.20-2.23), the total entropy flux (exclusive of the contribution of the lattice to the heat 
conduction) is found to be: 

T3(P = T£3P = T £P
M

J
(V)
 - I?'" •vr- (2-25) 

V V V 

Now eliminate J(v) in the above, using equation (2.19a); then: 

T3lP = - £K'M • VT + £ Tp(v)f#v) ■ VCA- - P(v)tfv) • VT). (2.26) 
V V 

For VT= 0, it follows from equation (2.24) that J(T) = £Vv) -Vi/e whence the total 
conductivity and resistivity tensor is: v 

*=£*'>;• tr-(l^)"1. (2.27) 
V V 

According to equation (2.24) [see also equation (2.17)], when J(r) = 0, the total Seebeck 
tensor is given by: 

p = V(C/e)/VT],(T) = 0 = ?.(£ ,W>). (2.28) 
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Finally, the total thermal conductivity (exclusive of the contribution from the lattice) is 
found from equation (2.17) as — TJ^/VT when J = 0. Using this latter condition, we 
can eliminate VC/e between equations (2.24) and (2.26), thereby obtaining: 

X? = £tfM + r£(p<*>)*8M - T(^P'
,
'>O<^).K.(ZP

(V)
O

(V)
) 

V V V V 

= £ tf(v) + T £ (p,v))23(v) - T(Y P(v)ff(v)) • p. (2.29) 
V V v 

Having shown how to determine <?,f?, ^andU' from one-group contributions, we can 
now apply the above theory to the case of Bi. Due to severe mathematical complexities 
which arise, we shall not explicitly determined' according to equation (2.29); the reader 
will note, however, that this can be done in principle through a knowledge of p<v) and 
a*v), since the 'K'

(V>
 occurring in equation (2.29) can be eliminated via the Wiedemann- 

Franz formulation, equation (2.23). 

3.   TRANSPORT TENSORS FOR THE CONDUCTION BAND OF BISMUTH: 
THE TILTING OPERATION 

Having constructed in Section 2 tensors for various transport coefficients in the 
principal coordinate system of each ellipsoid, we now begin the task of deriving the 
corresponding quantities for Bi. For this purpose, it is necessary to consider its band 
structure. 

In our further work, we shall specify the orientation of ellipsoids with reference to a 
crystal axis system in which the binary, bisectrix and trigonal axes constitute the x, y, 
and z directions. 

ABELES and MEIBOOM [5] (AM) assumed a conduction band exhibiting six whole or 
six half ellipsoids which lie along the threefold binary axes and hence are separated by 
60° in the x-y plane. They also postulated a valence band in which two half or two whole 
ellipsoids lie along the z-axis. The final formulae are independent of whether the bands 
are assumed to contain six or three and two or one ellipsoids respectively; we arbitrarily 
consider the case where the conduction band contains three ellipsoids (labelled v = 1,2,3) 
and the valence band, one ellipsoid (labelled v = 4). We also introduce the Jones-Shoen- 
berg (JS) refinement [7J, in which the conduction band ellipsoids are rotated about their 
respective binary axes in such a manner as to preserve a three-fold symmetry about the 
trigonal axis. Also, we extend the AM treatment to the Seebeck and Nernst tensors. 
In recent years, experimental evidence for two additional band model refinements have 
appeared in the literature; namely, (a) the non-parabolicity of the bands [16], and (b) the 
occurrence of additional bands [17]. We will neglect these latter complications because 
introduction of (a) in the theory generally leads to integrals which have to be evaluated 
numerically, and both (a) and (b) lead to extremely complicated expressions. 

The first step in the derivation consists in introducing a similarity transformation 
which rotates each conduction band ellipsoid about the appropriate binary axis, (i.e., 
about its own x' axis) by an angle 0(~ —6°), thereby bringing its x',y' plane into proper 
alignment with the x, y crystal plane. The transformation which accomplishes this will be 
denoted as the "tilting operation" and the conduction band ellipsoids which have been 
subjected to this operation are said to have been tilted (into the xy plane). The tilting 
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operation is specified by the tensor: 

11 

«,= 

"10 0 

0       cos0   sinfl  . (3.1) 

0    — sin 0    cos 0. 

To determine the effect of this tilting operation, it is simplest to begin with the resistivity 
tensor equation (2.21b). We inserted a subscript p to equations (2.21b), (2.22) and (2.23) 
to remind readers that the corresponding matrices have been specified in terms of the 
principal coordinate system of each ellipsoid. Let us now compute a new resistivity 
tensor for the tilted ellipsoid as: 

-1/u? -ZrH
(
:
v)/c ZvHf/c 

Z,ifiv)/c       l/w<v> -ZÄ"/c + 1/M ,  (3.2a) 

.-ZJlf/c   ZvH^/c+\/u   1/M«.
V) 

where the subscript t refers to the expression that is found subsequent to the tilting opera- 
tion. In the above, we have introduced the definitions: 

P!V) = »,,.pv,.»fl
7 = 

1 

We 

1/M£* ^ 1/uP 

I/«*/' = (cos2 0)/i#> + (sin2 0)/i£> 

l/«4v) = (cos2 0)/t#> + (sin2 0)/u!,v> 

//;.vl = //.I'' cos 0 + Äjr» sin 0 

tflv> = -//«V sin 0 + Aft' cos 0 

l/« = tW " J*> J (3.2b) 

By straightforward inversion of equation (3.2a), one obtains the conductivity tensor 
associated with the vlh tilted ellipsoid as: 

«'> = ■ 

where 

and 

1        1 
1/j.M,       II" 

SV»e -Z,.H<" 
DM M,C 

ZVH<» 

1 (^ 

II-       \   c  I 

Z^     Z,tfW     H^Hf 

u.c uc c2 

-z.tfj.'" _ z,.m"   //^tfi" 
II ..f i/c c2 

in- 

ZVH<;' 

H'.'W;» 

H
,
'
I
H

I
; 

UVM.        \   C   / MVC 

1       H'"Hi" 

11,11,. (?) 
,<3.3a) 

#;■> = A',,/«.v«,».- - (I/«XI/«,K - 2H<;W:yc
2); (3.3b) 

(3.3c) A"» = 1 + u,u2{H?/c)2 + ujtj&flc? + ujifWlcf. 

According to the model adopted here, the tilting operation is unnecessary for ellipsoid 
v = 4 in the valence band; its appropriate conductivity tensor is given by equation (2.16). 
In principle, the various mobilities in equation (3.3) should be indexed with a superscript v 
as well, but the latter is temporarily omitted for the sake of clarity. 

The Seebeck tensor for the electrons, equation (2.22), which has been constructed 
subject to the assumption that the T;. are independent of e, is isotropic in the present 
approximation, and therefore remains unaffected by the tilting operation. Also, the elec- 
tronic contribution to the thermal conductivity associated with the charge carriers in a 
particular ellipsoid can be obtained via equation (2.23). 
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Before summing the individual ojv) into a total conductivity tensor, it is necessary to 
rotate ellipsoids v = 2,3 so that their principal axes coincide with those of the crystal 
axes (the ellipsoid v = 1 is already properly aligned). For this purpose, we introduce the 
transformations (rotations about the z axis by 120° and 240°): 

■, to 

1 
—1 V! 0 1 _2~ -VI 0 

-Vi i —j 0 
<—> 
®240 = Vi i 

—j 0 

0 0 i. Lo 0 1 

(3-4) 

J.D dl) Their effect is found by carrying out the similarity transformations <r2  = *24o : o,   : S120 

on equation (3.3a). We then obtain: 120 240 

3 1       11 

4 uxu.     4 uru. 

J3   1   J3  1 
4  uxu.       4  Uyii. 4   ux\   c               c / 

Hi     1  1 
+ S~ 4u2 

ZVH.     HXH, 

u. c         cz 

1 Zv/     ,   tf,     H„\ 

4 My ^              C           C   ' 

4 M      2u \          c       c / 

HXH.     ZyH.     J3   1 
H—^-=- + —- — 4- -Ü  

c           2u   C         2   M,M 

+ V3    l__V3    1 
4   uxu.      4   uvii. 

1         3    I        /Hv\
2' 

4uxu.     4 »j».      \ c 1 

IZJ-HX       ,Hy\ 

4u,\ c               c / 

- Zv H.      HXHV      J?>  I 

u.     c         c          4   ir 

3 

~4ir 
T^--(TV3—-—) + 

4    M,, \           c         c / 

HrH.      v'3 Z, H.      1   1 
+ -V^T^ + - — 

c-         2   u   c      2 uux 

2   ux \   c               c / £(^4)* 
4 M,, \         c        c / ±£f(^-^ Uxlly                   \      C      / 

HxHr     v'3   1        1 Z, //, 

c2     "2   «XH     2 it   c 

H,H.     JiZyH.     1   i 

c           2    »   c      2 uxu 

(3.5a) 

in which: 

D 2' _ ^f-^n^T-^1 

'H.Y I —-I 
»,.» MC \      2     c 2 + Tfl+   -, (3.5b) 

In the above, we have also transformed the magnetic field components which were 
originally expressed in terms of the principal coordinate system of the tilted ellipsoids. 
The magnetic field with components HA(/. = x, y, z) is now specified in the common 
coordinate system introduced earlier. In carrying out the transformation, use has been 



Galvano-Therniomagnetic Phenomena 13 

made of the relationships 

H®=-±Hx±^Hy,   A® - T^ff, - ±H„   Ä®-ff.; 

one should also note that Hlf> = H(P = Hk{X = x, y, z). 
In principle, we are now in a position to obtain the total <? tensor via equation (2.27). 

In practice, due to the denominators which differ for various v, the requisite algebraic 
manipulations become excessive; we must resort to an examination of special cases in 
order to obtain tractable results. 

4.   TRANSPORT TENSORS FOR BISMUTH WITH H = kff. 

In this section, we specialize to the case where the magnetic field is aligned with the 
z axis of the crystal coordinate system. With this specialization, the subsequent mathe- 
matical operations are considerably reduced. 

We first demonstrate that for the conduction band, the transport integral S^} may 
be replaced with nJ3, where ne is the charge carrier density in the conduction band. 
This identity may be established by setting n = 1 in equation (2.13), introducing the 
changes in variable x = e/kT, r\B = i-iB/kT, and integrating by parts; one thus obtains: 

S</> = 4TTV mx,mfmA2kT/h2)3l2Fm(nB) = n«. (4.1) 

The central expression will be recognized as the density of charge carriers in a valley, 
;i(v). Since we assume that there are three equivalent ellipsoids in the conduction band, 
it follows that S^ = nJ3, as was to be proved. 

In now adding the partial conductivities, wc return to equation (3.3) for ellipsoid 1, 
to equation (3.5) for ellipsoids 2 and 3, and to equation (2.16) for ellipsoid 4. In these 
tensors, we set Hx = Hr = 0. Next, we restrict ourselves to the case where nc = nh = n, 
which applies to pure bismuth. Because of the considerable overlap between the valence 
and conduction bands, this equality is almost always experimentally encountered. Finally, 
we utilize the fact that i/JJ1' P u["} and u^} = uf\ as has been experimentally well docu- 
mented [5, 16]. 

For later use, we now construct, subject to the restrictions mentioned above, the partial 
conductivities of carriers in the two bands. These quantities are given by [see also equa- 
tion (2.27)]: 

»?>= £^lv)   and  V»=W\ 
v=l 

The requisite algebraic manipulations are straightforward, though rather tedious, and 
lead to the following results: 

D. 

'   Auf/2 -{Hjc)u^\if                      0 

{HJcW?uf Aufß                            0 

0 0                 K<n)[l + u^ufHl/c1]. 

D3 = A + i^hi^H2/c2, 

(4.2a) 

with 

(4.2b) 
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SjftÄ.) = 
lie 

A = 1 - uft W/uW^ 

oles is given by 

r   igt (Hz/c)«$f)2 0   " 

-WJc)& •4P 0 

0 0 4
P,
AJ 

with 

Ar s 1 + ux
p)2H2/c2. 

From the above, one can then construct the total conductivity tensor as: 

«:("=) = 
D.A. 

"AAM^/2 + Dzu'x
p) -(Hz/f)[AIu?,uJ" - D.I&1] 0 

1+    *   ^     '] 

+ A.^u'" 

The resistivity tensor is thus given by: 

D2A. 
neD'l 

AA^/2 + D.u<f> (ff./c)[A=u<c")<) - O-«*/'1] 

-(HI/C)[A,I<>"H*
,
> - Oz"!f)2]   Ab.itfß + D.-ui"1 

0 0 

0 

0 

in which: 

and 

D'z = A, {«**>[ 1 + ^t/fH'/c2] + öz4
p)}oi'; 

(4.2c) 

(4.3a) 

(4.3b) 

(4.4) 

(4.5a) 

(4.5b) 

D: = [XAX"72 + £>XP>]2 + [{ßJcXAj&P - DM?
2
)}

2
. (4.5C) 

The generalized Seebeck tensor may now be determined according to the relation 
p: = *$.: {aie): % + <?{.*' : ph), which is a reformulation of equation (2.28) as applied to 
the present case. The partial conductivity tensors are given by equations (4.2) and (4.3), 
the total resistivity tensor, by equation (4.4), and the quantities %ik = p^ffl]! are specified 
by equation (2.22). On carrying out the indicated operations, one obtains: 

%(Ht) = 

fc»Cff.) VXy(Hz) 0 

PXy(-H:) VXX(HZ) 0 

0 0 P.-.-(tf-) 

(4.6a) 

where 

Vxx(H:) = [ApeA:u™/2 + VHDMX
P)
][AAM™/2 + DMX»)+ 

HHJcftoA&P - phDjf][hzufuf - DM?
2
); (4.6b) 
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Vxy(H2) = (HJc){[ApeA2u?/2 + hPj&KArfS* - Djf']- 

- [Ahj&ß + D2u^][PeAzu^ - phDzu^2]}; (4.6c) 

pa{Hz) = (D:'/D;){pcA..i4n)[l + uft^Hl/c2] + pÄD.Az«<p)}. (4.6d) 

The above results are too cumbersome to be of use in the calculations. Accordingly, 
we consider two limiting cases, (a) (u^Hjc)2 < 1 ("weak field case"), and (b) {u^HJc)2 > 1 
("strong field case") where X, v = x, y, i and b = n, p. One should remember that in the 
hitler case, all quantum oscillatory phenomena are left out of account, so that the strong 
field results should be regarded as approximations to the region of intermediate field 
strengths where quantum effects are not yet appreciable. 

A limiting process in which terms of order H; or higher are neglected leads to the 
results shown below: 

Ä P;     Ane{tt?ß + u™)1 

A(ufß + u<f>) (HJc)(u™uf - Ailf) 

- (HJc)(it?uf - Attf)      A{ufß + u<f') 

0 

o 
A2(lt?ß + 1#>)2 

u<*> + Au(f>   J 

(4.7) 

I 

H
1™*

1
    AHtffl + W 

>(p.i4"V2 + P*«ip,)(u?'/2 + "i") 

(fl,/c)M","?'(P.-ft)x 

-(HJcjAttiWfa-vJx 
x(u*" + Mrt/2) 

42(p.u<r>/2 + wtfWfl + •#)) 

A\u^ß + KJ>>)2(p,ui"' + X>hAu{?) 
u™ + Au,p) 

(4.8) 

Likewise, on retaining only the highest even and odd powered terms in (4.5) and (4.6), 
the strong field results read: 

lim  p. = — 

2ufu<J\HJc? 
Au™ + 2ufy 

-4i4")(4">u^" - Au{f')(HJc) 
u{;\Au™ + 2uf)% 

0 

Aufruf - Aujp)1)(HJc) 
uf(Au™ + lu™)1 

2u^(Hjc)2 

Au(
x'> + 2uf 

uj" + 4"J 

(4.9) 

lim   ps = 
ii .,, 

ut\Au™ + 2uff 
2u<?>«iJ"(p. - p,)(HJc) 

-2u!f»uW(p, - Ph)(HJc) 
Au™ + 2uf 

Aufruf - Au™2)(% - p„) 
tftXAu™ + 2uff 

0 
M 

(4.10) 
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Attention is directed to the fact that one must proceed via the exact tensor, equation 
(4.5), before taking the limit Hz ~* oo because in several instances the leading term of 
the high field approximation vanishes identically. In these situations, the corresponding 
entries involve terms of the next lower order in Hz. 

A ciiscussion of the above results is deferred to Part II of this paper. 

5.   TRANSPORT TENSORS FOR BISMUTH FOR H = iHx AND H = jtfy 

Two other cases which remain relatively tractable are those for which the magnetic 
field points along the x or v directions of the crystal system. The procedure is exactly 
the same as outlined in Section 4 and reviewed again in Section 6, except that different 
magnetic field components are set equal to zero. We shall therefore only cite the final 
results. Despite all the simplifications used so far, the analogues of equations (4.5) and 
(4.6) for the quantities p*x, ft,f?v, ^ are extremely cumbersome; there seems little point 
in setting theni down. Instead, we proceed directly to the weak and strong field limits 
cited below. We find: 

Jim p, = ——r 
H.-.0 neD° 

~2(ut"> + Auf) 0 0 

0 2(uf + Au(f) (u^u™ -2Aufuf)HJc 

0 -(u^hif-2Aufuf)UJc      „4<i4"> + 2uf) 

(5.1a) 

with 

and 

D° = (»J0 + 2uf)(ul!') + Auf); (5.1b) 

lim  pv = —— 

3D* 

«J» + 3u<?> 

0 

0 

uPt&Qi/M + ufWJcf 

-{HJc)QufuM - Aufuf) + 

+ {HJc)2u^ufufuf/uM 

(Hjc)(3ufuf - Aufuf)+ 

+(HJc)zi$W;hifuf/uM_ .  ..- 

ufuf[(2A+ \)uf + 3uf](HJ~c)2 

(5.2a) 

with 

lim p., = —TK 

O* = (3MJ" + uf)(u™ + uf) - (i^'ii5,,M?,/«r")ä)(2if?.' + uf); (5.2b) 

2(M<"> + Auf) 0 -(H,./c)[2Aufuf - u^uf] 

0 2(u<"> + Auf) 0 ;     (5.3) 

(Hy/c)[2Aufuf - ufi&] 0 A(u^ + 2»:,'"j 
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lim pü, = 
neD' 

ufu'fQuf + ui'^HJc)2 

(iycjufi^yr'/tt*0 

(H^ufu^u'/'/u^ 

Au™ + H« 

- {.RJcWftfi&i&il -A)-       [lAu^u^uf - 

- 3i4u5f,i^")] 

i/'V?' + 3u<f>) 

(^/cJtufu^Mf (l - 4)- 

-3Ai#>u?)] 

2u<
v'

)H(/)M<rM ■ 

-uyy;»(uw + ifl>) 

«<•>(«« + 3«jf') 

(i4"> + 314") 

«<?> + 3«<f> 

(5.4) 

This disposes of the various resistivities. The Seebeck-Nernst tensors in these approxi- 
mations are given by: 

1 
lim pv — 
lx->0 I> 

(«« + ili^W*' + 2p*««) 

0 

0 

0 o 

(i4"> + A«?>Xp.«S" + 2w4'>) - «?,«(/)(«?) + 2u<f>XP. - P»)Hx/c 

«W««(t4«» + Au^lv, - Vh)HJc      (u?> + 2««XPA
W
 + i*fc«J*)        . 

(5.5) 

lim ». = — 

[p. uj» + Sp»«^]!)1 

w<?> + 3u<f> 

0 

0 

P^M"' + (2A + i)u(;'] + 

+ pX-'ßu« + uifH 

+ (HJc$»t - ft)«**l4,,M?)i^)/«(") 

- (p. - pl)<
)«4f)K"V«w 

- wjcypiP + (2A + 1)4"']} 

lim p,. = — 

(H?> + ^u^'XP.«?' + 2p»"!?') 

(U« + ^"XP««?1 + 2p„w!f)) 

- «?»««(«<"» + Ait»fo, - pJHj/c 

- (Pc - p*)w*,)t4'){uj"/«w + 

+ (HJcM* + 3««)} 

pcu;x
p>(i'=") + Au(/>) + pju'r^uj" + 

+ (2A + 1)M<"] - 

- (P. - P.Xul'Wt&uP/WHJcl 

u^u^u™ + 2u<f>) x 

x (P, - VhWJc 

0 

(u?> + 2u!f>Xp,uW + 

+ ^P»«irt) 

(5.6) 

(5.7) 
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+ H^IPX" W + 2Au'y">  + u«>) + 

+ iwy[(M + iK"' + 3M»]]} 
nf ) 3»i'" 

- 2ri?ifiXv/? + ^'"Xp, - ft) 

(«?' + 3w<") 

p.wj.'V/'tl - /I) + (4M1" + »l"') x 

x (3pc<' + P,,»1/") 

- M^'M'"
1
 - HL"«?

1
)] 

(iu'f + «?')"" 

M^M^SM""1 + Mi") 

X    (P,    -    PtWy/c) 

„«„««<%,, - p,) 

{(3tt<">'+ Mi"X3Mi" + M';») X 

X (P.«?' + P^M<") 

+ uf H«"(l - /i)[2pX" 

+ wfaw + iff)]} 
(ui" + 3«i") 

. (5.8) 

6.   PRELIMINARY DISCUSSION 

The above derivations provide all the results needed in the derivation of appropriate 
figures of merit for Bi; this extension of the work and the comparison between theory 
and experiment is deferred to Part II of this paper. However, at this stage it is worthwhile 
to review in outline form the general procedure and assumptions used in the derivations 
so far. 

Starting with the conventional formulation of the electric and thermal currents in 
terms of transport integrals, the distribution function was determined by solving the 
Boltzmann transport equation in the relaxation time formalism. Allowance was made for 
anisotropy of the medium and for the joint action of electric, magnetic, and temperature 
fields. The results so obtained specify the fluxes J and Jß in terms of the "forces" V(J/e) 
and VT; after converting from JQ to Js one obtains a set of phenomenological equations 
satisfying the Casimir-Onsager reciprocity conditions. On partial inversion of these 
relations, whereby V(J/e) and Js were assigned the status of dependent variables, the 
phenomenological equations were cast in a form that permitted the identification of 
the resistivity, Seebeck, and thermal conductivity tensors in terms of transport integrals. 
Expressions so obtained were then properly summed to take into account the contribu- 
tions arising from carriers in various conduction and valence band ellipsoids, allowance 
being made for the tilt of the former set about their respective binary axes. 

The final results are based on the following simplifying assumptions: (a) e is assumed 
to vary quadratically with the wave number vector components, (b) only contributions 
due to the overlapping valence and conduction bands were considered, (c) the relaxation 
time formalism was used in solving the Boltzmann equation, (d) all phonon-charge 
carrier interactions were presumed to be accounted for in specifying the relaxation time, 
and intervalley scattering effects were ignored, (e) hot electron effects and quantum 
effects in the high magnetic field region were not included. To obtain tractable analytic 
expressions, we also (f) considered only the special case in which the magnetic field is 
aligned with each of the crystal symmetry axes, (g) neglected, where permissible, l/ujj" 
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relative to l/<' and set t4p) = ul
y
p\ where the uih) are electron or hole mobilities for 

H = 0 along the indicated crystal symmetry axes, (h) restricted ourselves to the intrinsic 
case by setting n = p, and (i) specialized to the case of low and high magnetic fields. 
Finally, (j) for the weak field limiting case, only terms of order H° and H1 were retained. 
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Resume—On a applique au bismuth le formalisme du temps de relaxation; les resultats sont utilises, dans 
la partie II, pour determiner le facteur de merke du bismuth dans les processus de conversion d'energie. 
En utilisant, pour le bismuth, le modele de Jones-Shoenberg, on derive des expressions analytiques de la 
r6sistivite 61ectrique, de la conductivity thermique, et des coefficients de Hall, de Seebeck et de Nernst. 
On resout l'equation de transport de Boltzmann donnant la fonetion de distribution perturbee, en utilisant 
des temps de relaxation anisotropes. Le resultat est alors introduit dans les integrales de transport repre- 
sentant le courant electrique et le flux d'energie, pour aboutir aux equations phenomenologiques valables 
pour chaque groupe de porteurs de charge associe ä un ellipsoide donne. On additionne les contributions de 
chaque groupe de porteurs, dans le Systeme de coordonnees du cristal, pour obtenir les coefficients de trans- 
port mentionnis ci-dessus. Pour obtenir des expressions analytiques, il est necessaire de considerer les cas 
particuliers oü le champ magnetique est aligne avec chaeun des trois axes de symetrie, et de passer ä la 
limite des champs magnetiques tres faibles ou tres forts. 

Zusammenfassung—Die Transport-Theorie, begründet auf dem Relaxationszeit-Formalismus wird auf 
Wismut angewendet. Diese Erbebnisse werden dann in Teil II benutz, um die Güteziffer von Bi bei Energi- 
eumwandlungs-Prozessen zu bestimmen. Unter Benutzung des Jones-Shoenberg-Models für Wismut 
werden analytische Ausdrücke für den spezifischen elektrischen Widerstand, die Wärmeleitfähigkeit und 
für die Hall-, Seebeck- und Nernst-Koeffizienten abgeleitet. Die Boltzmann'sche Transportgleichung wird 
gelöst für gestörte Verteilungsfunktionen unter Benutzung von anisotropen Relaxationszeiten. Dieses 
Resultat wird dann in die Transport-Integrale für den elektrischen Strom und den Energiefluss eingeführt, 
um phänomenologische Gleichungen für jede Art von Ladungsträgern zu erhalten, die mit einem gegebenen 
Ellipsoid verbunden sind. Die Beiträge jeder Gruppe von Ladungsträgern werden dann addiert in dem 
gemeinsamen Symmetrie-Koordinatensystem des Kristalls, um die oben erwähnten Transportkoeffizienten 
zu erhalten. Um analytische Ausdrücke zu erhalten, war es notwendig, die Sonderfälle durchzuarbeiten, 
in denen das Magnetfeld mit jeder der drei Symmetrie-Achsen übereinstimmt und überzugehen auf die 
Grenzfälle sehr niedriger oder sehr hoher Magnetfelder. 


